Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Cell ; 41(5): 933-949.e11, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37116491

RESUMO

Due to their immunosuppressive role, tumor-infiltrating regulatory T cells (TI-Tregs) represent attractive immuno-oncology targets. Analysis of TI vs. peripheral Tregs (P-Tregs) from 36 patients, across four malignancies, identified 17 candidate master regulators (MRs) as mechanistic determinants of TI-Treg transcriptional state. Pooled CRISPR-Cas9 screening in vivo, using a chimeric hematopoietic stem cell transplant model, confirmed the essentiality of eight MRs in TI-Treg recruitment and/or retention without affecting other T cell subtypes, and targeting one of the most significant MRs (Trps1) by CRISPR KO significantly reduced ectopic tumor growth. Analysis of drugs capable of inverting TI-Treg MR activity identified low-dose gemcitabine as the top prediction. Indeed, gemcitabine treatment inhibited tumor growth in immunocompetent but not immunocompromised allografts, increased anti-PD-1 efficacy, and depleted MR-expressing TI-Tregs in vivo. This study provides key insight into Treg signaling, specifically in the context of cancer, and a generalizable strategy to systematically elucidate and target MR proteins in immunosuppressive subpopulations.


Assuntos
Neoplasias , Linfócitos T Reguladores , Humanos , Linfócitos T Reguladores/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteínas/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Proteínas Repressoras/metabolismo
2.
Front Immunol ; 12: 752348, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912335

RESUMO

Programmed cell death-1 (PD-1) blockade has a profound effect on the ability of the immune system to eliminate tumors, but many questions remain about the cell types involved and the underlying mechanisms of immune activation. To shed some light on this, the cellular and molecular events following inhibition of PD-1 signaling was investigated in the MC-38 colon carcinoma model using constitutive (PD-1 KO) and conditional (PD1cKO) mice and in wild-type mice treated with PD-1 antibody. The impact on both tumor growth and the development of tumor immunity was assessed. In the PD-1cKO mice, a complete deletion of Pdcd1 in tumor-infiltrating T cells (TILs) after tamoxifen treatment led to the inhibition of tumor growth of both small and large tumors. Extensive immune phenotypic analysis of the TILs by flow and mass cytometry identified 20-different T cell subsets of which specifically 5-CD8 positive ones expanded in all three models after PD-1 blockade. All five subsets expressed granzyme B and interferon gamma (IFNγ). Gene expression analysis of the tumor further supported the phenotypic analysis in both PD-1cKO- and PD-1 Ab-treated mice and showed an upregulation of pathways related to CD4 and CD8 T-cell activation, enhanced signaling through costimulatory molecules and IFNγ, and non-T-cell processes. Altogether, using PD-1cKO mice, we define the intrinsic nature of PD-1 suppression of CD8 T-cell responses in tumor immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Experimentais/imunologia , Receptor de Morte Celular Programada 1/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Feminino , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Morte Celular Programada 1/deficiência
3.
Eur Urol Oncol ; 4(1): 117-120, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31411999

RESUMO

Anti-PD-L1/PD-1 immunotherapy has improved survival for certain patients with metastatic urothelial carcinoma. However, the mechanisms of resistance to these agents have not been fully elucidated. We report the first combined analysis using RNA sequencing, whole-exome sequencing (WES), and flow cytometry of multiple tumor specimens over a 5-yr period for a patient undergoing anti-PD-L1 therapy. Initial sensitivity to anti-PD-L1 immunotherapy was associated with conversion to a basal molecular subtype and a rising tumor mutational burden. We found that as the tumor became more resistant to anti-PD-L1, the proportion of regulatory T cells and CD8+ T cells expressing alternative immune checkpoints including CTLA-4, TIM-3, and LAG-3 increased. This suggests that alternative immune checkpoint upregulation may be one form of anti-PD-L1 resistance in urothelial carcinoma. These data support the concept of combined immune checkpoint blockade for urothelial carcinoma, a concept that is being evaluated in prospective clinical trials. PATIENT SUMMARY: In this study we characterized how a patient with metastatic urothelial cancer became resistant to anti-PD-L1 immunotherapy. By tracking changes in protein and gene expression over time, we found that as urothelial carcinoma becomes resistant to PD-L1 blockade, additional immune checkpoints may be upregulated. These data support the concept of combined checkpoint blockade for urothelial carcinoma.


Assuntos
Carcinoma de Células de Transição , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias da Bexiga Urinária , Antígeno B7-H1/antagonistas & inibidores , Linfócitos T CD8-Positivos , Citometria de Fluxo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estudos Prospectivos , Linfócitos T Reguladores , Neoplasias da Bexiga Urinária/tratamento farmacológico
4.
J Immunother Cancer ; 8(2)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33127658

RESUMO

BACKGROUND: Programmed cell death protein 1 (PD-1) and CTLA4 combination blockade enhances clinical efficacy in melanoma compared with targeting either checkpoint alone; however, clinical response improvement is coupled with increased risk of developing immune-related adverse events (irAE). Delineating the mechanisms of checkpoint blockade-mediated irAE has been hampered by the lack of animal models that replicate these clinical events. METHODS: We have developed a mouse model of checkpoint blockade-mediated enterocolitis via prolonged administration of an Fc-competent anti-CTLA4 antibody. RESULTS: Sustained treatment with Fc-effector, but not Fc-mutant or Fc-null, anti-CTLA4 antagonist for 7 weeks resulted in enterocolitis. Moreover, combining Fc-null or Fc-mutant CTLA4 antagonists with PD-1 blockade results in potent antitumor combination efficacy indicating that Fc-effector function is not required for combination benefit. CONCLUSION: These data suggest that using CTLA4 antagonists with no Fc-effector function can mitigate gut inflammation associated with anti-CTLA4 antibody therapy yet retain potent antitumor activity in combination with PD-1 blockade.


Assuntos
Antígeno CTLA-4/antagonistas & inibidores , Inflamação/fisiopatologia , Receptor de Morte Celular Programada 1/metabolismo , Animais , Humanos , Camundongos
5.
J Clin Invest ; 130(3): 1405-1416, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32015231

RESUMO

Despite advancements in targeting the immune checkpoints program cell death protein 1 (PD-1), programmed death ligand 1 (PD-L1), and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) for cancer immunotherapy, a large number of patients and cancer types remain unresponsive. Current immunotherapies focus on modulating an antitumor immune response by directly or indirectly expanding antitumor CD8 T cells. A complementary strategy might involve inhibition of Tregs that otherwise suppress antitumor immune responses. Here, we sought to identify functional immune molecules preferentially expressed on tumor-infiltrating Tregs. Using genome-wide RNA-Seq analysis of purified Tregs sorted from multiple human cancer types, we identified a conserved Treg immune checkpoint signature. Using immunocompetent murine tumor models, we found that antibody-mediated depletion of 4-1BB-expressing cells (4-1BB is also known as TNFRSF9 or CD137) decreased tumor growth without negatively affecting CD8 T cell function. Furthermore, we found that the immune checkpoint 4-1BB had a high selectivity for human tumor Tregs and was associated with worse survival outcomes in patients with multiple tumor types. Thus, antibody-mediated depletion of 4-1BB-expressing Tregs represents a strategy with potential activity across cancer types.


Assuntos
Ligante 4-1BB/imunologia , Linfócitos do Interstício Tumoral/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias Experimentais/imunologia , Linfócitos T Reguladores/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Estudo de Associação Genômica Ampla , Humanos , Depleção Linfocítica , Linfócitos do Interstício Tumoral/patologia , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , RNA-Seq , Linfócitos T Reguladores/patologia
6.
Clin Cancer Res ; 24(20): 5058-5071, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29898992

RESUMO

Purpose: In the proper context, radiotherapy can promote antitumor immunity. It is unknown if elective nodal irradiation (ENI), a strategy that irradiates tumor-associated draining lymph nodes (DLN), affects adaptive immune responses and combinatorial efficacy of radiotherapy with immune checkpoint blockade (ICB).Experimental Design: We developed a preclinical model to compare stereotactic radiotherapy (Tumor RT) with or without ENI to examine immunologic differences between radiotherapy techniques that spare or irradiate the DLN.Results: Tumor RT was associated with upregulation of an intratumoral T-cell chemoattractant chemokine signature (CXCR3, CCR5-related) that resulted in robust infiltration of antigen-specific CD8+ effector T cells as well as FoxP3+ regulatory T cells (Tregs). The addition of ENI attenuated chemokine expression, restrained immune infiltration, and adversely affected survival when combined with ICB, especially with anti-CLTA4 therapy. The combination of stereotactic radiotherapy and ICB led to long-term survival in a subset of mice and was associated with favorable CD8 effector-to-Treg ratios and increased intratumoral density of antigen-specific CD8+ T cells. Although radiotherapy technique (Tumor RT vs. ENI) affected initial tumor control and survival, the ability to reject tumor upon rechallenge was partially dependent upon the mechanism of action of ICB; as radiotherapy/anti-CTLA4 was superior to radiotherapy/anti-PD-1.Conclusions: Our results highlight that irradiation of the DLN restrains adaptive immune responses through altered chemokine expression and CD8+ T-cell trafficking. These data have implications for combining radiotherapy and ICB, long-term survival, and induction of immunologic memory. Clinically, the immunomodulatory effect of the radiotherapy strategy should be considered when combining stereotactic radiotherapy with immunotherapy. Clin Cancer Res; 24(20); 5058-71. ©2018 AACR.


Assuntos
Imunoterapia , Linfonodos/patologia , Linfonodos/efeitos da radiação , Neoplasias/patologia , Neoplasias/terapia , Radiocirurgia , Transferência Adotiva , Animais , Linhagem Celular Tumoral , Terapia Combinada , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Imunoterapia/métodos , Linfonodos/imunologia , Linfonodos/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Melanoma Experimental , Camundongos , Neoplasias/imunologia , Neoplasias/metabolismo , Prognóstico , Radiocirurgia/métodos , Especificidade do Receptor de Antígeno de Linfócitos T , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Prostate Cancer Prostatic Dis ; 21(1): 113-125, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29203894

RESUMO

BACKGROUND: Immune checkpoint blockade has shown promising antitumor activity against a variety of tumor types. However, responses in castration-resistant prostate cancer remain relatively rare-potentially due to low baseline levels of infiltration. Using an immunocompetent cMyc-driven model (Myc-CaP), we sought to understand the immune infiltrate induced by androgen deprivation therapy (ADT) and to leverage that infiltration toward therapeutic benefit. METHODS: Using flow cytometry, qPCR and IHC, we quantified ADT-induced immune infiltration in terms of cell type and function. Preclinical treatment studies tested the combinatorial effects of ADT and immune checkpoint blockade using tumor outgrowth and overall survival as end points. RESULTS: ADT induces a complex pro-inflammatory infiltrate. This pro-inflammatory infiltrate was apparent in the early postcastration period but diminished as castration resistance emerged. Combining ADT with tumor-infiltrating regulatory T cell (Treg) depletion using a depleting anti-CTLA-4 antibody significantly delayed the development of castration resistance and prolonged survival of a fraction of tumor-bearing mice. Immunotherapy as a monotherapy failed to provide a survival benefit and was ineffective if not administered in the peri-castration period. CONCLUSIONS: The immune infiltrate induced by ADT is diverse and varies over time. Therapeutic strategies focusing on depleting Tregs in the peri-castration period are of particular interest.


Assuntos
Androgênios/uso terapêutico , Antígeno CTLA-4/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/terapia , Linfócitos T Reguladores/imunologia , Androgênios/imunologia , Androgênios/metabolismo , Animais , Antígeno CTLA-4/imunologia , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Imunoterapia , Masculino , Camundongos , Orquiectomia , Neoplasias de Próstata Resistentes à Castração/imunologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cancer Immunol Res ; 5(11): 992-1004, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28970196

RESUMO

Radiotherapy (RT) enhances innate and adaptive antitumor immunity; however, the effects of radiation on suppressive immune cells, such as regulatory T cells (Treg), in the tumor microenvironment (TME) are not fully elucidated. Although previous reports suggest an increased Treg infiltration after radiation, whether these Tregs are functionally suppressive remains undetermined. To test the hypothesis that RT enhances the suppressive function of Treg in the TME, we selectively irradiated implanted tumors using the small animal radiation research platform (SARRP), which models stereotactic radiotherapy in human patients. We then analyzed tumor-infiltrating lymphocytes (TIL) with flow-cytometry and functional assays. Our data showed that RT significantly increased tumor-infiltrating Tregs (TIL-Treg), which had higher expression of CTLA-4, 4-1BB, and Helios compared with Tregs in nonirradiated tumors. This observation held true across several tumor models (B16/F10, RENCA, and MC38). We found that TIL-Tregs from irradiated tumors had equal or improved suppressive capacity compared with nonirradiated tumors. Our data also indicated that after RT, Tregs proliferated more robustly than other T-cell subsets in the TME. In addition, after RT, expansion of Tregs occurred when T-cell migration was inhibited using Fingolimod, suggesting that the increased Treg frequency was likely due to preferential proliferation of intratumoral Treg after radiation. Our data also suggested that Treg expansion after irradiation was independent of TGFß and IL33 signaling. These data demonstrate that RT increased phenotypically and functionally suppressive Tregs in the TME. Our results suggest that RT might be combined effectively with Treg-targeting agents to maximize antitumor efficacy. Cancer Immunol Res; 5(11); 992-1004. ©2017 AACR.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Neoplasias/radioterapia , Radiocirurgia , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/efeitos da radiação , Animais , Linhagem Celular Tumoral , Feminino , Cloridrato de Fingolimode/farmacologia , Imunossupressores/farmacologia , Interleucina-33/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/patologia , Fator de Crescimento Transformador beta/imunologia , Carga Tumoral , Microambiente Tumoral/imunologia
9.
Cancer Immunol Res ; 5(7): 594-603, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28588015

RESUMO

Intravesical bacillus Calmette-Guérin (BCG) immunotherapy is the standard of care in treating non-muscle-invasive bladder cancer, yet its mechanism of action remains elusive. Both innate and adaptive immune responses have been implicated in BCG activity. Although prior research has indirectly demonstrated the importance of T cells and shown a rise in CD4+ T cells in bladder tissue after BCG, T-cell subpopulations have not been fully characterized. We investigated the relationship between effector and regulatory T cells in an immune competent, clinically relevant rodent model of bladder cancer. Our data demonstrate that cancer progression in the N-methyl-N-nitrosourea (MNU) rat model of bladder cancer was characterized by a decline in the CD8/FoxP3 ratio, consistent with decreased adaptive immunity. In contrast, treatment with intravesical BCG led to a large, transient rise in the CD4+ T-cell population in the urothelium and was both more effective and immunogenic compared with intravesical chemotherapy. Whole-transcriptome expression profiling of posttreatment intravesical CD4+ and CD8+ T cells revealed minimal differences in gene expression after BCG treatment. Together, our results suggest that although BCG induces T-cell recruitment to the bladder, the T-cell phenotype does not markedly change, implying that combining T-cell-activating agents with BCG might improve clinical activity. Cancer Immunol Res; 5(7); 594-603. ©2017 AACR.


Assuntos
Vacina BCG/administração & dosagem , Imunoterapia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/imunologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Vacina BCG/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Metilnitrosoureia/toxicidade , Ratos , Transcriptoma/genética , Transcriptoma/imunologia , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias da Bexiga Urinária/patologia
11.
J Immunother Cancer ; 4: 28, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27190629

RESUMO

BACKGROUND: Glioblastoma (GBM) is a poorly immunogenic neoplasm treated with focused radiation. Immunotherapy has demonstrated synergistic survival effects with stereotactic radiosurgery (SRS) in murine GBM. GITR is a co-stimulatory molecule expressed constitutively on regulatory T-cells and by effector T-cells upon activation. We tested the hypothesis that anti-GITR monoclonal antibody (mAb) and SRS together would confer an immune-mediated survival benefit in glioma using the orthotopic GL261 glioma model. METHODS: Mice received SRS and anti-GITR 10 days after implantation. The anti-GITR mAbs tested were formatted as mouse IgG1 D265A (anti-GITR (1)) and IgG2a (anti-GITR (2a)) isotypes. Mice were randomized to four treatment groups: (1) control; (2) SRS; (3) anti-GITR; (4) anti-GITR/SRS. SRS was delivered to the tumor in one fraction, and mice were treated with mAb thrice. Mice were euthanized on day 21 to analyze the immunologic profile of tumor, spleen, and tumor draining lymph nodes. RESULTS: Anti-GITR (1)/SRS significantly improved survival over either treatment alone (p < .0001) with a cure rate of 24 % versus 0 % in a T-lymphocyte-dependent manner. There was elevated intratumoral CD4+ effector cell infiltration relative to Treg infiltration in mice treated with anti-GITR (1)/SRS, as well as significantly elevated IFNγ and IL-2 production by CD4+ T-cells and elevated IFNγ and TNFα production by CD8+ T-cells. There was increased mRNA expression of M1 markers and decreased expression of M2 markers in tumor infiltrating mononuclear cells. The anti-GITR (2a)/SRS combination did not improve survival, induce tumor regression, or result in Treg depletion. CONCLUSIONS: These findings provide preclinical evidence for the use of anti-GITR (1) non-depleting antibodies in combination with SRS in GBM.

12.
Clin Cancer Res ; 22(5): 1161-72, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26490306

RESUMO

PURPOSE: Immune responses to antigens originating in the central nervous system (CNS) are generally attenuated, as collateral damage can have devastating consequences. The significance of this finding for the efficacy of tumor-targeted immunotherapies is largely unknown. EXPERIMENTAL DESIGN: The B16 murine melanoma model was used to compare cytotoxic responses against established tumors in the CNS and in the periphery. Cytokine analysis of tissues from brain tumor-bearing mice detected elevated TGFß secretion from microglia and in the serum and TGFß signaling blockade reversed tolerance of tumor antigen-directed CD8 T cells. In addition, a treatment regimen using focal radiation therapy and recombinant Listeria monocytogenes was evaluated for immunologic activity and efficacy in this model. RESULTS: CNS melanomas were more tolerogenic than equivalently progressed tumors outside the CNS as antigen-specific CD8 T cells were deleted and exhibited impaired cytotoxicity. Tumor-bearing mice had elevated serum levels of TGFß; however, blocking TGFß signaling with a small-molecule inhibitor or a monoclonal antibody did not improve survival. Conversely, tumor antigen-specific vaccination in combination with focal radiation therapy reversed tolerance and improved survival. This treatment regimen was associated with increased polyfunctionality of CD8 T cells, elevated T effector to T regulatory cell ratios, and decreased TGFß secretion from microglia. CONCLUSIONS: These data suggest that CNS tumors may impair systemic antitumor immunity and consequently accelerate cancer progression locally as well as outside the CNS, whereas antitumor immunity may be restored by combining vaccination with radiation therapy. These findings are hypothesis-generating and warrant further study in contemporary melanoma models as well as human trials.


Assuntos
Neoplasias Encefálicas/terapia , Neoplasias do Sistema Nervoso Central/terapia , Tolerância Imunológica , Melanoma Experimental/terapia , Fator de Crescimento Transformador beta/sangue , Animais , Antígenos de Neoplasias/administração & dosagem , Antígenos de Neoplasias/imunologia , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/radioterapia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos da radiação , Neoplasias do Sistema Nervoso Central/sangue , Neoplasias do Sistema Nervoso Central/imunologia , Neoplasias do Sistema Nervoso Central/radioterapia , Feminino , Humanos , Melanoma Experimental/sangue , Melanoma Experimental/imunologia , Melanoma Experimental/radioterapia , Camundongos , Microglia/imunologia , Microglia/patologia , Linfócitos T Citotóxicos/imunologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Vacinação
13.
Cancer Immunol Res ; 3(4): 345-55, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25527358

RESUMO

The immune-modulating effects of radiotherapy (XRT) have gained considerable interest recently, and there have been multiple reports of synergy between XRT and immunotherapy. However, additional preclinical studies are needed to demonstrate the antigen-specific nature of radiation-induced immune responses and elucidate potential mechanisms of synergy with immunotherapy. Here, we demonstrate the ability of stereotactic XRT to induce endogenous antigen-specific immune responses when it is combined with anti-PD-1 checkpoint blockade immunotherapy. Using the small animal radiation research platform (SARRP), image-guided stereotactic XRT delivered to B16-OVA melanoma or 4T1-HA breast carcinoma tumors resulted in the development of antigen-specific T cell- and B cell-mediated immune responses. These immune-stimulating effects of XRT were significantly increased when XRT was combined with either anti-PD-1 therapy or regulatory T cell (Treg) depletion, resulting in improved local tumor control. Phenotypic analyses of antigen-specific CD8 T cells revealed that XRT increased the percentage of antigen-experienced T cells and effector memory T cells. Mechanistically, we found that XRT upregulates tumor-associated antigen-MHC complexes, enhances antigen cross-presentation in the draining lymph node, and increases T-cell infiltration into tumors. These findings demonstrate the ability of XRT to prime an endogenous antigen-specific immune response and provide an additional mechanistic rationale for combining radiation with PD-1 blockade in the clinic.


Assuntos
Antígenos de Neoplasias/imunologia , Apresentação Cruzada/imunologia , Imunoterapia/métodos , Neoplasias Mamárias Experimentais/terapia , Melanoma Experimental/terapia , Receptor de Morte Celular Programada 1/imunologia , Radiocirurgia/métodos , Animais , Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Terapia Combinada , Feminino , Memória Imunológica/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Mamárias Experimentais/imunologia , Melanoma Experimental/imunologia , Camundongos Knockout
14.
PLoS One ; 9(11): e109080, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25372844

RESUMO

Lymphocyte Activation Gene - 3 (LAG-3) is an immune checkpoint molecule that regulates both T-cell activation and homeostasis. However, the molecular mechanisms underlying LAG-3's function are generally unknown. Using a model in which LAG-3 blockade or absence reliably augmented homeostatic proliferation in vivo, we found that IL-2 and STAT5 are critical for LAG-3 function. Similarly, LAG-3 blockade was ineffective in the absence of regulatory T-cells (Treg), suggesting an important role for LAG-3 in either the responsiveness of conventional T-cells (Tconv) to regulation, or a relative defect in the ability of LAG-3 KO regulatory T-cells (Treg) to suppress the proliferation of Tconv. In this model, LAG-3 KO Treg suppressed proliferation in a manner fairly similar to wild-type (WT) Treg, but LAG-3 KO Tconv were relatively resistant to suppression. Further studies also identified a role for LAG-3 in the induction/expansion of Treg. Finally, we found that LAG-3 blockade (or knockout) led to a relative skewing of naïve CD4 T-cells toward a TH1 phenotype both in vitro and in in vivo. Together, these data suggest that LAG-3 expression on Tconv cells makes them more susceptible to Treg based suppression, and also regulates the development of a TH1 T-cell response.


Assuntos
Antígenos CD/metabolismo , Ativação Linfocitária , Linfócitos T Reguladores/imunologia , Animais , Antígenos CD/genética , Proliferação de Células , Interleucina-2/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT5/metabolismo , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/fisiologia , Proteína do Gene 3 de Ativação de Linfócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...